Question 1

On a certain workday, the rate, in tons per hour, at which unprocessed gravel arrives at a gravel processing plant is modeled by $G(t) = 90 + 45 \cos\left(\frac{t^2}{18}\right)$, where t is measured in hours and $0 \le t \le 8$. At the beginning of the

workday (t = 0), the plant has 500 tons of unprocessed gravel. During the hours of operation, $0 \le t \le 8$, the plant processes gravel at a constant rate of 100 tons per hour.

(a) Find G'(5). Using correct units, interpret your answer in the context of the problem.

ſ.

- (b) Find the total amount of unprocessed gravel that arrives at the plant during the hours of operation on this workday.
- (c) Is the amount of unprocessed gravel at the plant increasing or decreasing at time t = 5 hours? Show the work that leads to your answer.
- (d) What is the maximum amount of unprocessed gravel at the plant during the hours of operation on this workday? Justify your answer.

Question 2

A particle moves along a straight line. For $0 \le t \le 5$, the velocity of the particle is given by

 $v(t) = -2 + (t^2 + 3t)^{6/5} - t^3$, and the position of the particle is given by s(t). It is known that s(0) = 10.

- (a) Find all values of t in the interval $2 \le t \le 4$ for which the speed of the particle is 2.
- (b) Write an expression involving an integral that gives the position s(t). Use this expression to find the position of the particle at time t = 5.
- (c) Find all times t in the interval $0 \le t \le 5$ at which the particle changes direction. Justify your answer.
- (d) Is the speed of the particle increasing or decreasing at time t = 4? Give a reason for your answer.

Question 3

t (minutes)	0	1	2	3	4	5	6
C(t) (ounces)	0	5.3	8.8	11.2	12.8	13.8	14.5

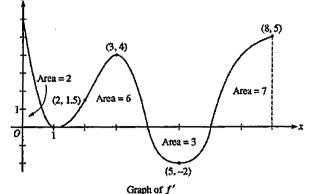
Hot water is dripping through a coffeemaker, filling a large cup with coffee. The amount of coffee in the cup at time t, $0 \le t \le 6$, is given by a differentiable function C, where t is measured in minutes. Selected values of C(t), measured in ounces, are given in the table above.

- (a) Use the data in the table to approximate C'(3.5). Show the computations that lead to your answer, and indicate units of measure.
- (b) Is there a time t, $2 \le t \le 4$, at which C'(t) = 2? Justify your answer.
- (c) Use a midpoint sum with three subintervals of equal length indicated by the data in the table to approximate the value of $\frac{1}{6}\int_0^6 C(t) dt$. Using correct units, explain the meaning of $\frac{1}{6}\int_0^6 C(t) dt$ in the context of the problem.
- (d) The amount of coffee in the cup, in ounces, is modeled by $B(t) = 16 16e^{-0.4t}$. Using this model, find the rate at which the amount of coffee in the cup is changing when t = 5.

Question 4

The figure above shows the graph of f', the derivative of a twice-differentiable function f, on the closed interval $0 \le x \le 8$. The graph of f' has horizontal tangent lines at x = 1, x = 3, and x = 5. The areas of the regions between the graph of f' and the x-axis are labeled in the figure. The function f is defined for all real numbers and satisfies f(8) = 4.

- (a) Find all values of x on the open interval 0 < x < 8 for which the function f has a local minimum. Justify your answer.
- (b) Determine the absolute minimum value of f on the closed interval $0 \le x \le 8$. Justify your answer.

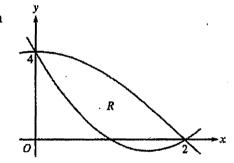


- (c) On what open intervals contained in 0 < x < 8 is the graph of f both concave down and increasing? Explain your reasoning.
- (d) The function g is defined by $g(x) = (f(x))^3$. If $f(3) = -\frac{5}{2}$, find the slope of the line tangent to the graph of g at x = 3.

Question 5

Let $f(x) = 2x^2 - 6x + 4$ and $g(x) = 4\cos(\frac{1}{4}\pi x)$. Let R be the region bounded by the graphs of f and g, as shown in the figure above.

- (a) Find the area of R.
- (b) Write, but do not evaluate, an integral expression that gives the volume of the solid generated when R is rotated about the horizontal line y = 4.



(c) The region R is the base of a solid. For this solid, each cross section perpendicular to the x-axis is a square. Write, but do not evaluate, an integral expression that gives the volume of the solid.

Question 6

Consider the differential equation $\frac{dy}{dx} = e^y (3x^2 - 6x)$. Let y = f(x) be the particular solution to the differential equation that passes through (1, 0).

- (a) Write an equation for the line tangent to the graph of f at the point (1, 0). Use the tangent line to approximate f(1.2).
- (b) Find y = f(x), the particular solution to the differential equation that passes through (1, 0).